Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Kam Seng Chan, ${ }^{\text {a }}$ Zuriati

Zakaria, ${ }^{\text {a }}$ Sri N. A. Malek ${ }^{\text {b }}$ and

 Bohari M. Yamin ${ }^{\text {a }}$${ }^{\text {a School of Chemical Sciences and Food Tech- }}$ nology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia, and ${ }^{\mathbf{b}}$ Institute of Biological Sciences, Universiti Malaya, 59100 Kuala Lumpur, Malaysia

Correspondence e-mail:
bohari@pkrisc.cc.ukm.my

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.034$
$w R$ factor $=0.097$
Data-to-parameter ratio $=8.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
5,9,14-Trimethyl-4,12-dioxatricyclo[9.3.0.0 ${ }^{3,5}$]-tetradeca-1(11),8,13-trien-2-one (zederone)

In the title compound, $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{3}$, the epoxy and furyl rings are planar and inclined to each other by $44.84(17)^{\circ}$. The α, β carbonyl system has S-cis conformation and both methyl groups in the ten-membered ring are in axial positions. The molecule is stabilized by van der Waals interactions.

Comment

The title compound, (I), is a sesquiterpenoid keto-dioxide compound found in the rhizome of curcuma, a genus of the family Zingiberacea herb that grows in tropical Asia. The detailed structure of zederone obtained from the rhizome of Curcuma zedoaria Roscoe used as an aromatic stomachic in the crude drug zedoary was established by NMR studies (Hikino et al., 1968). In the present study, crystals of (I) were obtained from an extract of Curcuma inodora aff. Blatter collected form West Malaysia.

(I)

The molecular structure contains three fused rings, viz. the ten-membered ring $\mathrm{C} 3-\mathrm{C} 12$, the five-membered ring $\mathrm{C} 1-\mathrm{C} 4 /$ O 1 and the epoxy ring $\mathrm{C} 10 / \mathrm{C} 11 / \mathrm{O} 2$ (Fig. 1). The epoxy ring is perfectly planar, while the furyl ring O1/C1-C4 has a maximum deviation of 0.010 (2) \AA for atoms C 1 and O1. The β-furyl methyl atom C13 is displaced by 0.029 (2) \AA from the least-squares plane. As a result, the α, β-unsaturated carbonyl system has an S-cis conformation. The dihedral angle between the furyl and epoxy rings is 44.84 (17) ${ }^{\circ}$. Both atoms C14 and C15 occupy axial positions of the somewhat chair-like conformation of the C6-C11 portion of the ten-membered ring. The bond lengths and angles are in normal ranges (Allen et al., 1987).

Experimental

The dried rhizomes of Curcuma inodora aff. Blatter were collected from MARDI, Teluk Intan, Perak, Malaysia. A voucher specimen (HI1336) has been deposited in the herbarium of the University of Malaya, Kuala Lumpur. Fresh C. inodora aff. Blatter rhizomes (1 kg) were dried for about 2 d in an oven and then ground to a fine powder for extraction. The powder was soaked in methanol for 3 d , and then the solution was filtered and the solvent was removed on a rotary

Received 13 March 2006
Accepted 20 March 2006
evaporator. The extraction was repeated once and the combined dried extract obtained was 15.0 g . The crude solid extract was further extracted using hexane. The hexane extract (2.30 g) was subjected to column chromatography using silica as stationary phase and eluted using hexane with an increasing ratio of ethyl acetate. Fractions 78-80 containing the compound $\left[R_{\mathrm{f}}=0.8\right.$, solvent hexane-EA(7:3)] were combined and concentrated by evaporation to give a colourless crystalline solid ($0.9 \mathrm{~g}, 0.10 \%$). Suitable crystals for X-ray investigation were obtained by multiple recrystallization from a mixture of hexane-acetone ($3: 1 \mathrm{v} / \mathrm{v}$). The melting point of $426.5-427.0 \mathrm{~K}$ and the NMR spectra of the product are in agreement with the reported values (Hikino et al., 1968).

Crystal data

```
C}\mp@subsup{\textrm{C}}{5}{}\mp@subsup{\textrm{H}}{18}{}\mp@subsup{\textrm{O}}{3}{
Mr}=246.2
Orthorhombic, P2 , 2 2 2 
a=9.672 (2) \AA
b=11.414 (3) \AA
c=11.656 (3) \AA
V=1286.7(5) \AA}\mp@subsup{\AA}{}{3
Z=4
D}=1.271 Mg m '3
```


Data collection

Bruker SMART APEX areadetector diffractometer
ω scan
Absorption correction: multi-scan (SADABS; Bruker, 2000)
$T_{\text {min }}=0.958, T_{\text {max }}=0.971$
7096 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.097$
$S=1.08$
1465 reflections
166 parameters
H -atom parameters constrained

Mo $K \alpha$ radiation
Cell parameters from 4030 reflections
$\theta=2.5-26.0^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block, colourless
$0.45 \times 0.40 \times 0.40 \mathrm{~mm}$

1465 independent reflections 1374 reflections with $I>2 \sigma(I)$

$$
R_{\mathrm{int}}=0.019
$$

$$
\theta_{\max }=26.0^{\circ}
$$

$$
h=-10 \rightarrow 11
$$

$$
k=-14 \rightarrow 13
$$

$$
l=-14 \rightarrow 11
$$

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0637 P)^{2} \\
&+0.0797 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.006 \\
& \Delta \rho_{\max }=0.13 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.11 \mathrm{e} \AA^{-3}
\end{aligned}
$$

All H atoms were located in a difference map, but they were repositioned geometrically, with $\mathrm{C}-\mathrm{H}=0.93-0.98 \AA$, and constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=1.5$ (for methyl H atoms) and 1.2 (other H atoms) times $U_{\text {eq }}(\mathrm{C})$. In the

Figure 1
The molecular structure of the title compound, (I), showing the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as spheres of arbitrary radii.
absence of any significant anomalous dispersion, Friedel pairs were merged before the final refinement.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997b); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

The authors thank the Malaysian Government and Kebangsaan Malaysia for the research grants and facilities provided.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans 2, pp. S1-19.

Bruker (2000). SADABS (Version 2.01), SMART (Version 5.603) and SAINT (Version 6.36a) . Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Hikino, H., Takahashi, S., Sakurai, Y., Takemoto, T. \& Bhacca, N. S. (1968). Chem. Pharm. Bull. (Tokyo), 16, 1081-1087.
Sheldrick, G. M. (1997a). SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

